16 std::complex<double> output(0,0);
17 double xi2Norm= sqrt(std::pow(xi(0),2) + std::pow(xi(2),2));
19 double nuFactor= 1-nu;
24 output= output + xi(k)*xi(l)*std::numbers::pi/(2*std::pow(xi2Norm,3));
25 else if (k==1 && l==1)
26 output= output + std::numbers::pi/(2*xi2Norm);
29 std::list<int> ijkl{i,j,k,l};
30 int count= std::count(ijkl.begin(),ijkl.end(),1);
34 output= output - xi(i)*xi(j)*xi(k)*xi(l)/(2*nuFactor) * 3 * std::numbers::pi / (8*std::pow(xi2Norm,5));
36 output= output - 1.0/(2*nuFactor) * 3 * std::numbers::pi / (8*xi2Norm);
41 for(
const auto elem : ijkl)
43 output= output - temp/(2*nuFactor) * std::numbers::pi / (8*std::pow(xi2Norm,3));
46 return -output/(4*std::pow(std::numbers::pi,2)*
mu);